

Beyond Technology Readiness Levels for
Software: U.S. Army Workshop Report

Stephen Blanchette, Jr.
Cecilia Albert
Suzanne Garcia-Miller

December 2010

TECHNICAL REPORT
CMU/SEI-2010-TR-044
ESC-TR-2010-109

Acquisition Support Program
Research, Technology, and System Solutions Program

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Beyond Technology Readiness Levels for Software: U.S. Army Workshop
Report

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SEI Administrative agent,ESC/XPK,5 Eglin Street,Hanscom
AFB,MA,01731-2100

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center. The Government of the United States has a royalty-free
government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner,
and to have or permit others to do so, for government purposes pursuant to the copyright license under the
clause at 252.227-7013.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

Public Release

18. NUMBER
OF PAGES

55

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library
http://www.sei.cmu.edu/library

CMU/SEI-2010-TR-044 | i

Table of Contents

Acknowledgments vii

Executive Summary ix

Abstract xi

1 Introduction 1
1.1 About this Report 1
1.2 DoD Hardware TRLs and Software TRLs 1
1.3 Workshop Participants 2

2 A Common Glossary 5

3 Presentation Summaries 7
3.1 Initial Thoughts—Cecilia Albert, SEI 7

3.1.1 Why is Software Readiness an Issue? 7
3.1.2 Shortcomings of Current Approaches to Addressing Readiness for Software 8
3.1.3 Summary 10

3.2 Sustaining Software for Embedded Weapons—Larry Osiecki, Armament SEC 11
3.2.1 Challenges 11
3.2.2 Combating the Challenges 13

4 Discussion and Working Group Summaries 15
4.1 Software Readiness Levels 16
4.2 Mapping SRLs to the Acquisition Life Cycle 19

4.2.1 Software Embedded in a System 19
4.2.2 Software is the System 21
4.2.3 Technology/Product/Process Issues 22

4.3 System of Systems Considerations 22

5 Conclusion and Future Work 25

Feedback 27

Appendix A: Acronyms and Abbreviations 29

Appendix B: DoD TRL Definitions 33

References 38

CMU/SEI-2010-TR-044 | ii

CMU/SEI-2010-TR-044 | iii

List of Figures

Figure 1: A Traditional View of Software Design Evolution 7

Figure 2: The Defense Acquisition Management Life Cycle 8

Figure 3: Challenges Facing Software-Intensive Systems Acquisition 11

Figure 4: Mapping Readiness Levels to the Acquisition Life Cycle for Embedded Software 20

Figure 5: Mapping Readiness Levels to the Acquisition Life Cycle when Software is the System 21

CMU/SEI-2010-TR-044 | iv

CMU/SEI-2010-TR-044 | v

List of Tables

Table 1: DoD Technology Readiness Levels 1

Table 2: Workshop Participants (listed alphabetically by last name) 3

Table 3: Brainstormed Software Readiness Levels 17

Table 4: DoD Definitions of Technology Readiness Levels for Hardware and Software 33

CMU/SEI-2010-TR-044 | vi

CMU/SEI-2010-TR-044 | vii

Acknowledgments

The authors are grateful to Linda Levine, Michael Bandor, and Linda Northrop of the SEI, whose
detailed reviews and insightful comments improved the quality of this report.

CMU/SEI-2010-TR-044 | viii

CMU/SEI-2010-TR-044 | ix

Executive Summary

On August 10–11, 2010, the Carnegie Mellon® Software Engineering Institute (SEI) facilitated an
Army workshop, Beyond Technology Readiness Levels for Software, at Picatinny Arsenal in
New Jersey. The workshop was part of the ongoing Army Strategic Software Improvement
Program (ASSIP) under the oversight of the Office of the Assistant Secretary of the Army for
Acquisition, Logistics, and Technology (ASA(ALT)).

Technology readiness levels (TRLs) are standard measures used to determine whether a
technology is sufficiently mature to be incorporated into a system. Software readiness has become
an important issue for several reasons. Though software often makes up only a small percentage
of overall program budgets, software issues are often an overriding constraint to delivery of Army
systems to the field. For embedded systems, software is the “nervous system” that enables overall
system functionality. Yet, software still is not routinely considered early in program formulation.

Further, experience with a number of technology readiness assessments (TRAs) of systems
involving software has shown several shortcomings in the TRA process or its application,
including

• risk of distraction by “glamorous” technologies, causing mundane but time-tested technology
to be overlooked

• lack of distinction among software types (newly developed software, reused software, and
commercial-off-the-shelf software)

• loss of experience and knowledge base when moving from a laboratory environment to a
“relevant” environment, negatively affecting readiness scores

• inconsistencies between the TRA process and the Department of Defense Instruction (DoDI)
5000.02 acquisition life cycle

• inconsistent definition of what represents a new software technology

• incomplete consideration of life-cycle maintenance and support

• external influences on technology choices that may cause an implied critical technology
element (CTE)—that is, one that does not meet the definition of CTE but nevertheless has the
same effect on a program

• lack of guidance for handling technologies that are started in one increment of the software
but finished in a later increment

Many of the noted problems with the TRA process and its application are rooted in the fact that
the DoD’s software TRLs were derived from the original set of hardware TRLs rather than being
developed independently from a software perspective. The question, then, is what “real”
information do program managers need to understand the risk of moving forward past a major
milestone when software is involved in a complex acquisition?

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

CMU/SEI-2010-TR-044 | x

The Army’s own systemic analysis of software-intensive acquisition programs shows that failings
(such as poor oversight and flawed acquisition strategy) during development cause particular
difficulty for weapon systems with embedded software as they pass initial deployment and must
be maintained. Often, it is the Army’s software engineering centers that must attempt to
compensate for these failings.

Workshop participants agreed that the knowledge represented by a readiness indicator, at any
level, should provide assurance that the software is mature enough to proceed to the next
acquisition phase. Such knowledge has many facets. Within the time constraints of the workshop,
attendees focused on defining a candidate set of five “software readiness levels” (SRLs)—
concept, architecture, design/prototype, developed, and ready for deployment—and mapping
those SRLs to the acquisition life cycle. It turns out that the mapping is highly dependent on the
type of system being developed. Mapping SRLs to weapon systems with embedded software is
more straightforward than mapping to systems in which the software effectively is the system,
such as enterprise resource planning (ERP) systems.

It is interesting to note that the SRLs that occur earlier in development (concept, architecture, and
design/prototype) tended to emphasize product insight while the later SRLs tended to have more
of a process focus. In addition, participants noted that the proposed SRLs did not treat
satisfactorily the programmatic aspects of software development, post-deployment issues such as
software sustainment and evolution, and systems of systems.

The problem of characterizing software readiness is not a simple one, and many questions must
still be answered. Nearly 70% of attendees expressed interest in continuing discussions on this
topic.

CMU/SEI-2010-TR-044 | xi

Abstract

The Carnegie Mellon® Software Engineering Institute (SEI) facilitated an Army workshop,
Beyond Technology Readiness Levels for Software, on August 10-11, 2010. The workshop, part
of the ongoing Army Strategic Software Improvement Program (ASSIP), was an attempt to
develop an Army perspective on the “right” software information to gather and analyze at
significant program decision points (especially Milestones A, B, and C) to determine readiness to
proceed to the next acquisition phase. This report synthesizes the workshop presentations,
discussions, and outcomes.

CMU/SEI-2010-TR-044 | xii

CMU/SEI-2010-TR-044 | 1

1 Introduction

On August 10-11, 2010, the Carnegie Mellon® Software Engineering Institute (SEI) facilitated an
Army workshop entitled Beyond Technology Readiness Levels for Software at Picatinny Arsenal
in New Jersey. The workshop was part of the ongoing Army Strategic Software Improvement
Program (ASSIP) under the oversight of the Office of the Assistant Secretary of the Army for
Acquisition, Logistics, and Technology (ASA(ALT)).

1.1 About this Report

This document summarizes the presentations and discussions from the workshop. This section
introduces the problems the services have encountered using DoD Software TRLs and lists the
workshop participants. Section 2 reviews the glossary that attendees used to achieve a common
understanding during discussions. Section 3 summarizes presentations made at the beginning of
the workshop. Section 4 summarizes the discussions and findings of each of the working group
sessions. Section 5 presents conclusions and identifies potential future work.

The appendices include a list of acronyms and the current DoD TRL definitions. References to
cited works may be found at the end of the report.

1.2 DoD Hardware TRLs and Software TRLs

At the System and Software Technology Conference (SSTC) in April 2010, a panel drawn from
the services, the Office of the Secretary of Defense (OSD), and the SEI presented summaries of
studies and activities conducted over the past few years on the application of Department of
Defense (DoD) technology readiness levels (TRLs) for software (see Table 1). In general, those
studies concluded that the use of the software TRLs is problematic, to the point that many who
have participated in technology readiness assessments (TRAs) and subsequent program decisions
believe that TRLs are an incorrect basis for evaluating either software technologies or software
products throughout the course of an acquisition.

Table 1: DoD Technology Readiness Levels1

Definitions

Level Hardware Software

1 Basic principles observed and reported Basic principles observed and reported

2 Technology concept and/or application formulated Technology concept and/or application formulated

3 Analytical and experimental critical function and/or
characteristic proof of concept

Analytical and experimental critical function and/or
characteristic proof of concept

4 Component and/or breadboard validation in a
laboratory environment

Module and/or subsystem validation in a laboratory
environment (i.e., software prototype development
environment)

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
1 See Appendix B for additional details regarding the hardware and software TRLs.

CMU/SEI-2010-TR-044 | 2

Definitions

Level Hardware Software

5 Component and/or breadboard validation in a
relevant environment

Module and/or subsystem validation in a relevant
environment

6 System/subsystem model or prototype
demonstration in a relevant environment

Module and/or subsystem validation in a relevant
end-to-end environment

7 System prototype demonstration in an operational
environment

System prototype demonstration in an operational
high-fidelity environment

8 Actual system completed and qualified through test
and demonstration

Actual system completed and mission qualified
through test and demonstration in an operational
environment

9 Actual system proven through successful mission
operations

Actual system proven through successful mission-
proven operational capabilities

To date, efforts by the services to interpret the DoD software TRLs have been constrained by the
requirement to retain the basic definitions when creating guidance. Though marginally useful,
these efforts have only confirmed for the participants the futility of continuing to base readiness
decisions for software aspects of systems on the DoD software TRLs.

This workshop focused primarily on Army software-related interests but was informed by
ongoing efforts in other DoD areas. Participants were asked to ignore current constraints and
consider: “What is the right information to gather and analyze related to software at significant
program decision points (especially Milestones A, B, and C) to determine readiness to proceed
into the next acquisition phase?”

The desired outcome of the workshop was to develop an Army strategic direction for tackling the
shortcomings in the readiness-level concept for software. The Army hoped to share this
information with the other services and to collaborate on an evaluation approach that provides
DoD decision makers with relevant software-related information at key acquisition decision
points.

1.3 Workshop Participants

Suzanne Garcia-Miller of the SEI led the workshop, assisted by other SEI technical professionals.
Workshop participants represented the broad acquisition community, including the office of the
assistant secretary of the Army for acquisition, logistics, and technology, Army program
executive offices (PEOs), Army and Joint project management offices (PMOs), Army software
engineering centers and directorates, the Defense Contract Management Agency (DCMA), the
Army’s Central Technical Support Facility (CTSF), and the MITRE Corporation. Overall, 38
individuals participated in the workshop: 30 Army participants, 2 joint PEO/PMO participants, 4
SEI participants, 1 MITRE participant, and 1 DCMA participant.

CMU/SEI-2010-TR-044 | 3

Table 2: Workshop Participants (listed alphabetically by last name)

Attendee Organization

Cecilia Albert SEI

Stephen Blanchette, Jr. SEI

Tom Blenk Armament Research, Development, and Engineering Center (ARDEC)

Michael Bonastia Project Manager (PM) Close Combat Systems/Armament Software Engineering Center
(SEC)

Michael Brown Armament SEC

Eric Byrd PEO Soldier

Terry Carlson PEO Aviation

Karen Davis PEO Ammunition

Monica Farah-Stapleton Assistant Secretary of the Army for Acquisition, Logistics, and Technology (ASA(ALT))

Cathy Fitch PEO Ammunition

Mindy Gabbert Communications-Electronics Command (CECOM) SEC

Tim Ganguly Joint Project Manager Guardian

Suzanne Garcia-Miller SEI

Tim Green Communications-Electronics Research, Development and Engineering Center
(CERDEC) Software Engineering Directorate (SED)

Michael Gully Aviation and Missile Research, Development, and Engineering Center (AMRDEC) SED

Scott Hamma PEO Ground Combat Systems

Mike Herrmann PEO Enterprise Information Systems

Chris Jais ASA(ALT)

Valarie James Precision Fires Rocket and Missile Systems/PEO Missiles & Space

Ken Kragh CECOM SEC

Alex Leung PEO Ammunition

Angela Llamas-Butler SEI

Robert Loesh AMRDEC SED

Steve Lubash Armament SEC

Glenda Mendiola PEO Intelligence, Electronic Warfare & Sensors

Donna Merriman Defense Contract Management Agency (DCMA)/Software Engineering Acquisition
Management

Bryce Meyer PEO Integration/SEI

Dana Miles CECOM SEC

John F. Miller MITRE

Larry Osiecki ARDEC SEC

Richard Payne ARDEC Quality Engineering & System Assurance (QESA)

Barbara Pemberton PEO Simulation, Training, and Instrumentation

Josh Pressnell Joint PEO Chemical and Biological Defense

Tracey Roberts Central Technical Support Facility (CTSF)

CMU/SEI-2010-TR-044 | 4

Dhaval Shah PEO Ammunition

Gagan Singh ARDEC QESA

Gari-Lynn Smith U.S. Army

Jack VanKirk PEO Aviation

CMU/SEI-2010-TR-044 | 5

2 A Common Glossary

Experience has shown that different interpretations of the same words often lead to
misunderstandings. Too often, people part company believing they have an agreement, only to
find out later that interpretational differences have resulted in two (or more) unique perspectives,
neither of which is agreeable to the other party. With that in mind, Suzanne Miller presented a
proposed glossary of the terms that were important to the discussions in this workshop. The terms
are presented below in the order that they were discussed.

Development
Systematic application of knowledge toward the production of useful materials, devices, and
systems or methods [Meade 2003] (includes commercial-off-the-shelf, or COTS, configuration)

Maintenance
Corrective and preventive activities performed on fielded systems (and systems of systems) meant
to prolong their useful life

(Pre-) Planned Product Improvement (vs. “Evolution”)
Enhancements to an existing system meant to improve its ability to meet changing mission needs

System
A functionally, physically, and/or behaviorally related group of regularly interacting or
interdependent elements; that group of elements forming a unified whole [CJCS 2001, CJCS
2006]

Subsystem
A system that is part of one or more larger system [Wikipedia 2010b]

System of Systems
A set or arrangement of systems that results when independent and useful systems are integrated
into a larger system that delivers unique capabilities [DoD 2010]

Capability
Ability to achieve a desired effect under specified standards and conditions through combinations
of ways and means to perform a set of tasks [CJCS 2009]

Real Time (as in Real-Time System)
Hardware and software systems that are subject to a “real-time constraint”—i.e., operational
deadlines from event to system response [Wikipedia 2010a]

Emergence (vs. Synergy)
The presence of novel (not just unanticipated) behaviors in a composition of multiple systems or
system elements

CMU/SEI-2010-TR-044 | 6

Agility
Possessing both the qualities of flexibility (designed-in ability to change in anticipated ways) and
adaptability (ability to be changed in unanticipated ways)
During the course of discussion, the group identified an additional term:

Deployment
Delivery of a capability to its intended end user

At the conclusion of the workshop, the definition of several terms proved elusive with respect to
technology readiness (that is, the group was unable to agree upon definitions):

• readiness

• software (i.e., it is more than just “code”)

• software maturity

• software readiness

• software technology

The group noted that, ironically, even the Technology Readiness Assessment Deskbook published
by the DoD does not contain a definition of technology [DoD 2009].

3 Presentation Sum

During the first day, two backgro
development. This section summa

3.1 Initial Thoughts—Cecili

Cecilia Albert, Chief Engineer for
presented some initial thoughts on

3.1.1 Why is Software Read

There are several reasons why sof
small percentage of overall progra
Army systems to the field. For em
system, enabling much of the syst
early in program formulation. For
modern aircraft. Figure 1 illustrat
software decisions are made at th
not considered until the point of s

Figure 1: A Traditional View of Sof

The recognition of the impact of s
acquisition also contributes to the
ubiquitous network interaction, bo
software and defer dealing with it
more, and the situation is especial
interactions must cooperate to ach

CMU/SEI-2010-

maries

und presentations were given by experts in software
arizes each of those presentations.

a Albert, SEI

r Army Programs at the Software Engineering Institute,
n software readiness.

iness an Issue?

ftware readiness has become an issue. Though software i
am budgets, it is often an overriding constraint to deliver

mbedded systems, software is the “nervous system” of th
tem’s functionality. Yet, software still is not routinely co
r example, software is a critical element of the radar syst
tes a traditional view of software design evolution. Impor
e very earliest stages of the program, but software typica
software requirements development.

ftware Design Evolution

systems of systems (SoS) on engineering, development,
e need to think about software readiness. The advent of
oth within and among systems, makes it infeasible to iso
ts issues. Virtually no DoD system operates in isolation a
lly difficult when systems that previously had no externa
hieve their respective objectives. The mechanism for ach

-TR-044 | 7

is often a
ry of
e overall

onsidered
tems of
rtant
ally is

and

olate
any
al
hieving

such interoperation is invariably s
the baseline program.

In essence, the “ecosystem” of ac
the changes. They must find the in
programs that will result in system
current system engineering appro
inadequate levels of staff who are
modern software approaches into
model).

Because software has become suc
is a topic whose time has come.

3.1.2 Shortcomings of Curre

Figure 2 depicts the acquisition li
equivalent of TRL 6 prior to Mile
mechanism for measuring readine
problematic across a wide spectru

Figure 2: The Defense Acquisition

Having participated on a number
several shortcomings in the TRA

• Technology choices: high vi
systems with highly visible o
mundane, but nonetheless hig
elements (CTEs).2 Further, so

2 According to the TRA Deskbook, “A

this technology element to meet op
technology element or its applicatio
during detailed design or demonstr

CMU/SEI-2010-

software—software that likely had not been envisioned a

cquisition is changing, and PMOs must find ways to cope
nformation needed to address the software aspects of the
ms that evolve as part of an SoS ecosystem. Unfortunatel
oaches fall short. Insufficient PMO knowledge and skills
e both system and software savvy tend to result in a force

older system engineering models (such as the venerated

ch an important part of system development, software rea

ent Approaches to Addressing Readiness for Soft

ife cycle [DoD 2008]. By law, a program must have achi
estone B approval [DoD 2009]. However, the prominent
ess in DoD development programs—the TRLs—are cons
um of software-intensive programs and program types.

n Management Life Cycle

of TRAs for systems involving software, the SEI has ob
process and its application [Bandor 2010]:

isibility or “glamorous” vs. mundane. Programs acquir
or “glamorous” technologies may inadvertently overlook
gh-impact technologies when identifying critical technolo
oftware that supports such advanced technologies is rarel

A technology element is “critical” if the system being acquired depe
perational requirements (within acceptable cost and schedule limits)
on is either new or novel or in an area that poses major technologic
ration” [DoD 2009].

-TR-044 | 8

as part of

e with
eir
ly,
and

e-fit of
d V-

adiness

ware

eved the

sidered

served

ring
more
ogy
ly

nds on
) and if the

cal risk

CMU/SEI-2010-TR-044 | 9

considered, even though it could comprise many millions of undeveloped lines of code (and,
therefore, a significant risk).

• Lack of distinction between software types. The TRA process does not appear to
differentiate between newly developed software, reused software, and COTS software
products when applying TRL definitions. The existing TRA descriptions for the measures of
the software TRLs seem more appropriate to pre-existing software (e.g., COTS software) and
could be difficult to apply in cases where a program has large amounts of software that is a
mixture of new and reused code. The meaning of “technology readiness” has different
implications for new code versus COTS software.3 Assessing both types of software with the
same readiness definitions is difficult. In addition, strict interpretation of software TRL 5 or
higher would exclude all newly developed code that is created post-Milestone B. For software
especially, this exclusion seems counter to the intent of assessing readiness.

• Demonstrations in a “relevant” environment. The software TRL 6 definition,
“demonstration in a relevant environment,” does not take into consideration who or which
“team” performed the prior demonstrations. Historical trends show prior team integration
experience with specific software technologies significantly contributes to reduced
programmatic software risk. Yet, current software TRL definitions appear to discount prior
use in similar and relevant environments almost as a “point solution.” Experience also plays a
role; there is potential for significant differences in “technology readiness” with an
experienced integration team as opposed to a completely new integration team. In addition,
care must be taken in determining the relevance of an environment. For example,
technologies demonstrated in a commercial environment do not necessarily map to the
anticipated use in a military environment.

• TRA process inconsistencies with DoDI 5000.02 acquisition life cycle. The software TRA
process appears, in part, to be inconsistent when aligned with certain DoDI 5000.02 program
life-cycle model events. The current TRA process presents a “chicken-or-egg” situation for
software TRLs when newly developed code is involved. For instance, as mentioned earlier,
TRL 6 is required prior to Milestone B approval. TRL 6 requires demonstration in a “relevant
environment,” which implies that some form of the software code exists within that
environment to support a demonstration. Yet, a formal acquisition program does not exist
until Milestone B, meaning contractors are not yet under contract and much of the software
(particularly for embedded systems) is not yet developed at the point of the TRA.

• Definition of a new software technology. The TRL “threshold” for defining what constitutes
software technology readiness seems vague enough that consistently applying it to new,
reused, and COTS software technologies is subject to interpretation and inconsistency, which
risks defeating the purpose of assessing readiness in the first place. One difficulty is that,
particularly in cases of embedded software, the software product is viewed as an enabling
technology in the eyes of the product engineer. For the software developer, however, that

3 For instance, architecture of developed code is visible to the program, but often the architecture of COTS

software is proprietary and not available to developers other than the COTS vendor. Further, COTS software is
rarely a “technology element” for a larger system, where developed code often serves as the enabling
technology for a particular hardware-based solution.

CMU/SEI-2010-TR-044 | 10

product is the result of using software technologies (such as languages and test environments)
to create what is needed to support the engineering choices for the larger product. So software
engineers tend to look at software technologies as the things that are used to develop the
software, not as the software itself. This dichotomy of perspective consistently shows up in
technology readiness assessments involving software.

• Incomplete consideration of life-cycle maintenance/support. There is not enough
consideration in the TRA process of the life-cycle maintenance and support of technologies.
COTS software changes and updates are largely driven by corporate market dynamics, not by
the PMO. In programs with long development times, a chosen COTS software product may
become obsolete and require replacement even before the initial system is fielded, potentially
invalidating TRA findings from early in the program.

• External influences on technology choices causing an implied CTE. As more software
programs are hosted by other organizations, technology choices or upgrades to those new
environments (not directed or caused by the originating PMO) may cause an “implied” CTE.
For example, say a host changes to a virtual server environment but the original software was
designed to run in a more traditional N-tier environment that depends upon physical servers
being deployed. The change affects the cost and schedule of the original program (cost
savings from not having to buy and deploy additional physical servers), but it also causes a
“new relevant environment” to be realized. According to the TRA guidelines, the server
virtualization would be considered a CTE. A problem now arises: The original program has
neither a virtual server requirement nor a performance requirement to which the new CTE can
be traced (part of the TRA process).

• Technologies begun in one increment and finished in a later increment. Programs
executing an incremental acquisition strategy may choose to initially implement a technology
in one increment while completing the full implementation in a subsequent increment. The
potential exists for a technology element or CTE to be missed as a result. A question arises: If
a technology element or CTE is not missed, should it be evaluated as a partial fulfillment of
the function, or later as a full implementation, or both? It also is possible for the technology’s
status to change between increments, thereby affecting programmatic decisions by the PMO.
Such situations are not addressed in the current TRA guidance.

3.1.3 Summary

While technology readiness levels for software provide some useful information, they also have a
history of problems. Many of these problems stem from the fact that software TRLs were derived
from the original set of hardware TRLs. What is needed is a set of software readiness levels that
have been derived from the important knowledge points during software development.

The question remains, what is the “real” information needed to understand the risk of moving
forward past a major milestone when software is involved? If the answer truly is the current TRL
type of information, then nothing more need be done. If the answer is something other than TRLs,
then we need to define what that something is. If the answer is a hybrid of TRL and other
information, then we need to figure out how to make that work.

The answer should be based on w
acquisitions that include software
acquisition milestone.

3.2 Sustaining Software for E

Larry Osiecki, Director of the Arm
presented an overview of the chal
weapon systems.

3.2.1 Challenges

In 2010, the Army conducted a sy
study was a fact-based analysis of
acquisition programs in the DoD,
compiled a set of issues for Army
affinity groupings.

Figure 3: Challenges Facing Softw

Of the noted findings, several (de
Army when weapon systems with
cycle.

• Intellectual Property and D
− Use of proprietary solu

necessitate reverse engin
changes can be made.

− Limited data rights an
rights (or sufficient unde
software changes needed

CMU/SEI-2010-T

what helps Army program managers involved in complex
e move forward appropriately when approaching a major

Embedded Weapons—Larry Osiecki, Armament SE

mament Software Engineering Center at Picatinny Arsen
llenges facing the Army in sustaining software for embed

ystemic analysis of software-intensive acquisition progra
f systemic issues impacting large-scale software-intensiv
 and a benchmark for Army systems. The analysis team

y acquisition leadership. Figure 3 shows the findings clus

ware-Intensive Systems Acquisition

enoted by red text in Figure 3) cause particular difficulty
h embedded software enter the post-deployment phase of

Data Rights
utions and black box solutions. Such closed solutions
neering the software designs and architectures before any

nd intellectual property. Too often, the Army lacks suffi
erstanding of the rights it has acquired) to be able to mak
d.

TR-044 | 11

x

EC

nal,
dded

ams. The
ve

stered by

for the
f the life

y code

cient
ke the

CMU/SEI-2010-TR-044 | 12

• Constrained Design/Quality Attributes

− Narrow architectural focus that inhibits system evolution and inflexible designs.
Often, Army systems are developed with an inadequate focus on quality attributes,
particularly modifiability. The result is systems that satisfy their original requirements
but have very limited ability to expand to meet changing needs.

• Knowledge Sharing
− Poorly documented software engineering data packages. One of the keys to effective

maintenance is good system documentation—which is especially true for software,
because software has no physical manifestation. However, many PMOs limit the amount
of documentation produced for a system as a way to save on development costs, which
then increases the difficulty and cost of performing software sustainment.

• Execution Discipline/Assurance Requirements
− Use of COTS. COTS software is frequently used as a means to reduce development

costs, but for embedded weapon software especially, it can complicate sustainment.
COTS packages tend to be updated often, more frequently than the update cycle of most
weapon systems. Weapon systems must be certified for safety and network security, and
some for airworthiness, each time they are changed. Frequent updates are simply
unaffordable. Further, COTS software can introduce security vulnerabilities that make
some recertifications difficult.

• Program Management
− Lack of business case analysis for software sustainment. Software sustainment plans

rarely receive adequate attention during overall program planning. As a result, the
question of which organization (an Army software center, the development contractor, or
a third-party contractor) will perform maintenance remains open until the latter stages of
the system development effort. The delay shortchanges sustainment planning and
prevents sustainment considerations from influencing the software architecture and
design up front.

• External Influences
− DoD and Army policies geared for information technology. There is a tendency

within the DoD and the Army to treat all software alike, as information technology (IT)
assets. However, IT system software—from desktop applications to enterprise resource
planning (ERP) systems and even some battlefield command-and-control systems—
generally is not subject to the same performance requirements, stringent testing, or
certification processes that apply to software for embedded weapon systems. The two
types of software have very different upgrade and release timelines. Policies that ignore
these differences make it difficult for software sustainment organizations to work
effectively and efficiently.

• Transition Planning
− Inadequate transition planning/resource allocation. Frequently, the transition to

software sustainment is not adequately considered in the overall post-deployment plans
for the system. The sustainment organization needs adequate time to train staff, acquire
any special software tools, and develop any necessary facilities in order to perform the
sustainment work.

CMU/SEI-2010-TR-044 | 13

• Staffing Level at PMO
− General lack of technical oversight exercised in acquisition. Because of efforts to

streamline acquisition offices in the past, it is now common for PMOs to have
inadequate staff to provide robust technical oversight of development efforts.

• Project Monitoring/Control/Oversight
− Incomplete deliveries. Too often, PMOs focus on the deliverable software for the

system. As a result, deliveries include only that software; important and necessary
elements such as tool suites, development environments, and supporting documentation
are missing. The Army must then acquire those items after the fact and at additional
expense. Sustainment organizations sometimes must reverse-engineer missing
documentation.

• Requirements Development/Technical Planning
− Science and technology projects fielded to meet capability need. A recurring problem

in the DoD is the fielding of experimental or proof-of-concept systems because they
meet a critical operational capability. These systems typically have been developed with
no consideration for maintenance or evolution at all. Trying to force-fit such systems
into a traditional acquisition model after the fact in order to complete their development
has proven problematic time and again.

3.2.2 Combating the Challenges

To help combat some of the challenges in sustaining weapon system software, the Armament SEC
has developed a customer-awareness program. The program helps project managers and PMO
staffs think through some of their software issues, particularly with regard to future sustainment,
early in the life cycle to facilitate better planning during development. Key elements of the
program are helping a PMO to determine what makes the software being acquired on a program
supportable throughout the life cycle and how to facilitate the materiel release process for the
software.

The SEC helps customers with issues such as

• ensuring the possession of source code within the Armament SEC repository

• obtaining documentation that fully delineates the requirements

• ensuring the capture of the software architecture/design in documentation or in electronic
form

• ensuring bi-directional traceability of requirements to software design, source code, test cases
and test documentation

• determining the existence of and verifying the software engineering data package (i.e., the
software production baseline), which is established through conduct of a software physical
configuration audit

• ensuring the existence, availability, knowledge of use, and documentation of the software
support environment, to include all taxpayer-developed emulators, simulators, and stimulators
used in the software development and test

CMU/SEI-2010-TR-044 | 14

• ensuring software-build procedures exist, are documented, and are verified to produce a tested
version of the software

• ensuring that, at a minimum, Government Purpose Use Rights are obtained for all delivered
software, including the explicit identification of any data rights limitations and licensing
agreements

• ensuring that configuration management procedures have been established for all software-
related products

• providing continuity of operations (e.g., executable code, source code, and documents are
secure in an alternate location for disaster-recovery purposes)

CMU/SEI-2010-TR-044 | 15

4 Discussion and Working Group Summaries

The group’s discussion centered on the concept of readiness. What would software readiness
connote? Participants agreed that the knowledge represented by a readiness indicator, at any level,
should provide assurance that the software is mature enough to proceed to the next acquisition
phase. Facets of such knowledge include an understanding that the software technology (e.g.,
programming languages, tools, and so on) is mature as well as an understanding that the software
product (i.e., the code) is mature. There was discussion, but not agreement, that one should also
be confident in the maturity of the software-development process.

Further, participants said that a given readiness level for software should ensure that sufficient
information is available to justify confidence that the software will be suitable for its intended use
and, from a programmatic perspective, that there are adequate data to support confidence that the
software will be on cost and on schedule.

Attendees were asked what might be the attributes of software that is ready for its intended use,
which produced a list stating that the software must

• be safe

• have stable performance

• have known residual risk

• be maintainable

• be implemented in a way that reflects its intended architecture

• be secure (to the degree needed)

• meet functional and operational needs

• interoperate as defined

− with partners
− using defined standards/protocols

• be accepted by intended users

• be validated

• be verified

• be documented

• be supportable

• comply with software engineering best practices

• be on a hardware platform that is available and stable

Software product scalability and requirements stability also were mentioned as potential
attributes, but the entire group did not agree that those should be added to the list.

All agreed that the various notions of readiness are important. However, because of time limits the
workshop focused on the aspects of software readiness that indicate the maturity of the software
product itself and how that maturity relates to system milestones.

CMU/SEI-2010-TR-044 | 16

The central activities of the workshop were the brainstorming sessions. The original plan was to
divide participants into teams to brainstorm what should be known about software at the key
acquisition life-cycle milestones (including post-deployment). Attendees instead elected to focus
on defining a candidate set of “software readiness levels” (SRLs) as a single group.

4.1 Software Readiness Levels

During the course of discussion, one attendee remarked that Gartner, Inc.4 had a list of technology
maturity levels. From least mature to most mature, the list includes the following levels [Fenn
2009]:

• embryonic

• emerging

• adolescent

• early mainstream

• mature mainstream

• legacy

• obsolete

Attendees discussed the relative merits and disadvantages of the Gartner list. In particular, they
noted that the latter levels (mature mainstream, legacy, and obsolete) connoted a system’s
decreasing ability to adapt to change. The last two levels are particularly valuable in that they can
guide decision-makers about when to shift investment priorities (i.e., when to invest in further
maintenance of an existing system versus when to acquire a replacement system).

Leveraging the Gartner list, the group brainstormed a list of potential software readiness levels
that reflected increasing maturity through the software-development life cycle. Attendees then
reflected on what might constitute appropriate completion criteria and evidence of completion.
The results are shown in Table 3.

4 Gartner is a leading information technology research and advisory company.

CMU/SEI-2010-TR-044 | 17

Table 3: Brainstormed Software Readiness Levels

Proposed
Software
Readiness Level

Completion Criteria Artifacts that Could Provide Evidence of
Completion

Concept • Features defined
• Operations concept defined that

represents user expectations
• Operational/stakeholder requirements

are approved
• Appropriate feasibility studies have been

conducted (hardware, software,
algorithm)

• Mission/capability objectives have been
defined for the system

• Initial set of quality attributes has been
defined

• Interfaces are defined (as part of
requirements?)

• Quality attribute scenarios
• Stakeholder requirements document
• White papers
• Algorithms
• Initial interface requirements
• Software requirements specification

(SRS) outline
• Use cases
• System definitions to show software

context (allocation of system functions to
hardware, software, humans and
relationships among them)/functional
architecture

• Draft software development plan
• Feature impact statement
• Concept of operations document
• Mission/capability statements

Architecture • Appropriate architecture views (e.g.,
modular, runtime, deployment) have
been defined

• Selections of approved software-
development tools have been made

• Architecture evaluations have been
conducted

• Appropriate standards and protocols
have been selected

• Interfaces have been refined
• Initial CSCIs have been defined
• Architecture elements have been

allocated
• Software test strategy has been defined

• Architecture documented in multiple
views

• Architecture evaluation results
• Interface control specifications
• Software test and evaluation plan
• System/subsystem design document

(SSDD)
• Criteria for evaluating prototype
• DoD Information Assurance Certification

and Accreditation Process (DIACAP)
plan/selection of approved software tools

Design/Prototype • Functioning prototype
• Software design is defined
• CSCIs are refined
• Architectural allocations are fleshed out
• Results of analyzing prototype(s)
• Proof of “reproducibility” (via a

functioning configuration management
system)

• Software test planning is complete

• Test plan/initial draft of test cases
• Resource requirements (technical

performance measures)
• Software design document
• Working version description document

(VDD)
• List of included COTS products
• Requirements traceability matrix
• Architecture-to-design traceability matrix
• Updated SRS
• Software WBS
• Updated software architecture views
• Database schema
• Prototype evaluation report
• Software development plan

CMU/SEI-2010-TR-044 | 18

Proposed
Software
Readiness Level

Completion Criteria Artifacts that Could Provide Evidence of
Completion

Developed • Unit testing is completed
• Software integration is completed
• Interfaces have been verified
• Software is documented and reviewed
• Peer reviews are conducted and

analyzed
• Developed code conforms to

documentation
• Code is under appropriate configuration

management
• Quality attributes have been verified
• Freeze criteria for code have been

defined

• Unit and software integration test results
• Functional Configuration Audit/Physical

Configuration Audit (FCA/PCA) results
• Peer review reports
• Updated VDD
• Software users manual
• Software quality statement
• Metrics map to software quality

attributes (technical performance
measures [TPM]) and analysis results

• Criteria for software freeze
• Software Formal Qualification Test

(FQT) dry run report
• Software test readiness review

document
• Deployment plan

Ready for
Deployment

• Formal certifications are completed
(information assurance [IA],
interoperability, safety, authority to
operate [ATO], etc.)

• System test complete
• User acceptance tests completed
• Operational tests/assessments are

complete
• Maintenance strategy defined
• Baseline is established
• Post-deployment support infrastructure

established (field support, tiered support,
training, help desk…)

• Certification reports and issued
certifications or waivers

• Operational test report
• VDD
• FQT/Software Test Report (STR)
• Software users manual
• Software operators manual
• Software tech manual
• Software sustainment/

supportability/suitability plan
• User acceptance memo
• Deployment plan
• Concurrence letter from PM
• Validated data loading and installation

scripts
• Safety and IA checklist (how to use a

simple key loader [SKL] to load an
encryption key)

Upon reflection overnight, attendees were dissatisfied with the brainstormed readiness levels and
associated artifacts. One attendee commented, “It feels like we reinvented software engineering,”
referring to the list of fairly standard completion criteria and artifacts shown in Table 3. Attendees
acknowledged the need to address the goodness of things rather than the existence of things (i.e.,
artifacts must have achieved a certain level of quality and completeness to be considered
acceptable). Further, artifacts are places to look for evidence; they do not necessarily represent
evidence in and of themselves. Thus, there is a need for technical evaluation of artifacts and
evidence; check-the-box exercises, where completed artifacts receive full credit and acceptance
without regard for their sufficiency, will prove useless in determining the readiness of software.

There was considerable discussion about the appropriateness of using readiness levels for
software. It was suggested that assigning arbitrary readiness levels might be an errant approach
for software. Another suggestion was that software readiness level might be the wrong name, as
the term “readiness level” carries a lot of baggage and may set incorrect expectations. In the end,
attendees acknowledged the need for some way of measuring knowledge about software in

CMU/SEI-2010-TR-044 | 19

systems as a basis for investment decisions. Readiness levels can provide a means of
communicating with people who do not understand software—it would be useful to state that a
software change causes a program to move from SRL 5 to SRL 1. Unfortunately, current TRAs
do not add sufficient value when making judgments about software.

Attendees concluded that the workshop really was an attempt to fix the software-development
process with respect to acquisition. Software engineering should be tied to system engineering in
the acquisition life cycle. With that in mind, workshop facilitators kicked off the next activity.

4.2 Mapping SRLs to the Acquisition Life Cycle

The other central activity of the workshop was mapping the candidate software readiness levels to
the acquisition life cycle. For this activity, attendees were divided into two teams based on their
relative expertise:

• Team 1 focused on software embedded in a system. Such systems include modern tanks,
helicopters, and similar systems.

• Team 2 focused on software as the system (i.e., where software is the principal system
element, ignoring the computer hardware needed for the software to execute). Such systems
include ERP systems and command-and-control systems.

Although the named readiness levels were useful in starting discussions, they very quickly drove
waterfall thinking in both groups. This outcome suggests that numbered readiness levels may be
the better approach because the abstraction away from concrete terms presents less of an
enticement toward constrained thought.

4.2.1 Software Embedded in a System

Figure 4 shows how Team 1 mapped the brainstormed SRLs to the Defense Acquisition
Management Life Cycle. As depicted, the mapping for embedded software was relatively
straightforward. In general, Team 1 said a given SRL must be met in order to proceed further,
with the exception that there may be some risk-reduction actions that justify approval to proceed
even if an SRL has not been fully met. The mapping indicates the latest point at which a given
SRL should be achieved; achieving readiness levels sooner is desirable. An SRL review (whether
by TRA or another mechanism) should occur before the noted SRL assessment milestones. Team
1 felt it was important to ensure the software development remained synchronized to the system
development. Hence, most SRLs are not mapped to the acquisition milestones but rather to key
points in the system-development process.

Figure 4: Mapping Readiness Lev

The Concept Level supports a Mi
elements would be implemented i
safety, security, and reliability sho

The Architecture Level, meaning
evaluated objectively, is tied to th
whichever comes first.

The Design Level, at which the so
critical design review (CDR) (i.e.
CDR).

The Developed Level, meaning th
integration testing, is tied to a low
need to have achieved readiness i
decision would fall after the miles
for fully achieving the Developed

The Deployed Level, indicating th
waivers) and is ready to be install

Although post-deployment issues
need to reevaluate the SRL in ligh

CMU/SEI-2010-T

vels to the Acquisition Life Cycle for Embedded Software

lestone A decision. There should be a firm idea of which
in software. A list of hazards and vulnerabilities with res
ould also be available.

the software architecture is at a sufficiently mature state
he system preliminary design review (PDR) or Milestone

oftware design should be largely complete, is tied to the s
, achievement of the SRL should be an entrance criterion

hat all software has been written and tested up to and incl
w-rate initial production (LRIP) decision. Team 1 highlig
in excess of the Design Level to pass Milestone C if the L
stone. A key component of passing Milestone C would b
d Level by the point at which an LRIP decision would be

hat the software has received all required certifications (o
led on fielded systems, is tied to the materiel release deci

s were not explicitly considered, Team 1 felt there would
ht of any post-deployment changes.

TR-044 | 20

h system
spect to

to be
e B,

system
n for

luding
ghted the
LRIP
be a plan
e made.

or
ision.

d be a

4.2.2 Software is the System

Mapping SRLs to the acquisition
somewhat more complicated, as i
the notion of iterative developmen
and do it frequently (in other wor
part chose to align SRLs to key p
acquisition milestones.

Figure 5: Mapping Readiness Lev

Here again, the Concept Level sh
the software in this case is more c
potential use and planning make/b

The initial Architecture Level is a
relatively early readiness is possib
not dependent on many non-softw
achieved at Milestone B. The othe
that the architecture and design w
cycle between SRR and PDR. Ho
acquisition schedules are too restr
Level prior to Milestone B.

CMU/SEI-2010-T

m

life cycle in cases where the software “is” the system wa
is evident from Figure 5. Figuring prominently in this do
nt. Team 2 noted the need to plan incremental testing, sta

rds, be more agile). Interestingly, this group, too, for the m
oints in the system-development process rather than to

vels to the Acquisition Life Cycle when Software is the System

ould support a Milestone A decision. However, the conc
concerned with identifying COTS/GOTS software packa
buy analyses.

achieved by the system requirements review (SRR). Such
ble because, unlike an embedded system, the software sy

ware design decisions. Similarly, the initial Design Level
er significant difference from the embedded system map

work iterate during the Technology Development phase o
owever, Team 2 noted that color-of-money issues and cur
rictive for software that may be ready to achieve the Dev

TR-044 | 21

as
main is
art early,
most

m

cept of
ages for

h
ystem is
l can be
pping is
of the life
rrent
velop

CMU/SEI-2010-TR-044 | 22

As a consequence of the early iteration of architecture and design, the software system reaches the
Developed Level of readiness early as well. As shown in Figure 5, this level is achieved by CDR.
The Deployed Level of the initial (adolescent) system can then be achieved just after that time and
prior to Milestone C.

Significantly, development of the software system iterates again at this point, as the system is
matured to its fully operational state. The iteration results in another round of readiness level
evaluations prior to the deployment of the “mainstream” system at Milestone C. The significance
of this timing is that Milestone C is a deployment decision for the software system rather than a
manufacturing decision, as would be the case for embedded systems.

4.2.3 Technology/Product/Process Issues

During the mapping exercise, a third team attempted to differentiate among
technology/product/process issues. Based on Table 3, Team 3 noted that there seemed to be more
product insight early on in the proposed SRLs, while there was more of a process focus at later
stages. There was an acknowledged need to consider programmatic aspects of software
development (such as cost estimations) but little agreement about how to do so.

Plenary discussion concluded that the proposed SRLs represented a good start but were by no
means the final answer. There may be a need for more SRLs (i.e., levels that address post-
deployment explicitly). Conversely, fewer SRLs might be possible if the proposed list were
redefined. The group noted the need to reflect the DoD’s currently defined TRL structure (see
Appendix B), either by explicitly redefining existing categories (in collaboration with the DoD) or
by mapping new SRLs to the TRLs. Finally, the group discussed the need to evaluate any set of
SRLs against different acquisition models to ensure the levels made sense and added value across
the span of different software-development projects.

4.3 System of Systems Considerations

As part of the original workshop agenda, the group was to discuss software-readiness implications
in relation to systems of systems. Because of time constraints, the planned discussion was
deferred to a sidebar after the conclusion of the workshop. A small subset of attendees
participated.

Those who stayed for the discussion noted that, increasingly, each system is a component in one
or more SoSs. Some of these SoSs are known in advance; planning for the necessary interactions
can be achieved up front, often through interface agreements and specifications. However, some
of these SoS are not known until “runtime.” In other words, the external interactions with other
SoS components are not known until the system is operating in its intended environment. In such
cases, interactions must be governed by standard information exchange policies to which each
member of the SoS adheres. For any given system, there is likely a combination of these types of
interactions.

Fundamental to this new reality is that the communications model has changed. No longer can a
system rely upon simple communication protocols. The tyranny of the network forces every
system to deal with multiple layers of the open systems interconnection (OSI) model. At a

CMU/SEI-2010-TR-044 | 23

minimum, systems must identify the data and services they need as well as the data and services
they provide.

In order to adequately protect SoSs, developers need to understand where to constrain these
systems. However, much of the power of SoSs is in the unconstrained emergent properties they
exhibit. Finding the right balance for that tension has proven difficult.

Another difficulty in SoS development has been the ability of different generations of technical
people to collaborate effectively. The older generations, for whom personal computers were the
technology standard, are effectively immigrants to the modern digital reality. Current
generations—digital natives, so to speak—expect to select icons rather than write source code. A
bridge is needed between the digital immigrants and the SoS-centric digital natives [Prensky
2001].

Current software-readiness notions seem to be especially challenged in an SoS environment,
particularly when the constituent systems are on different development schedules. It is not clear
that the ideas from this workshop would be any better.

CMU/SEI-2010-TR-044 | 24

CMU/SEI-2010-TR-044 | 25

5 Conclusion and Future Work

The importance of software to the capability delivered by most modern DoD systems has focused
new light on software-development efforts even if they represent a relatively small part of overall
system-development programs. As a result, the DoD has become keenly interested in determining
the readiness of software with an eye toward reducing overall program risk. Unfortunately,
current conceptions of software readiness were derived from hardware-readiness notions and have
proven problematic in practice.

At the conclusion of the workshop, facilitators noted a lack of clear distinctions among three
separate but related goals: (1) building product quality; (2) achieving predictable cost and
schedule; and (3) developing confidence in the building blocks of a system. This outcome
suggests that the answer to “readiness for what?” has not been clearly communicated across the
DoD.

While this workshop offered some new perspectives on readiness levels for software, it is clear
that the problem is not a simple one. Many questions must still be answered with regard to
software readiness:

• What are the right sets of product/process completion criteria?

• How should SRLs be mapped to existing TRLs, if at all?

• How, if at all, should programmatic aspects be incorporated into assessments of readiness?

• How can the proposed SRLs be used with different acquisition scenarios (e.g., COTS-driven
development or major weapon enhancement)?

• How, if at all, can SRLs work in the SoS environment?

• How should SRL concepts be socialized with the proponents of the current DoD TRL
schema?

Of the 38 workshop attendees, 26 expressed interest in continuing discussions on this topic. Plans
are underway for the ASSIP to continue investigations in FY11.

CMU/SEI-2010-TR-044 | 26

CMU/SEI-2010-TR-044 | 27

Feedback

The SEI, through its Acquisition Support Program, is working to help improve the acquisition of
software-reliant systems across the U.S. government. As part of its mission, the SEI is very
interested in learning how other organizations are dealing with readiness levels and technology
readiness assessments with regard to software. In addition, the SEI is pleased to discuss the
information in this report in more detail.

Please send questions or comments about this report to Stephen Blanchette, Jr. at
sblanche@sei.cmu.edu.

mailto:sblanche@sei.cmu.edu

CMU/SEI-2010-TR-044 | 28

CMU/SEI-2010-TR-044 | 29

Appendix A: Acronyms and Abbreviations

The list below contains all acronyms and abbreviations, and their meanings as used in this report.

ARDEC
Armament Research, Development, and Engineering Center

AMRDEC
Aviation and Missile Research, Development, and Engineering Center

ASA(ALT)
Assistant Secretary of the Army (Acquisition, Logistics, and Technology)

ASSIP
Army Strategic Software Improvement Program

ATO
Authority to Operate

CDR
Critical Design Review

CECOM
Communications-Electronics Command

CERDEC
Communications-Electronics Research, Development and Engineering Center

CMU
Carnegie Mellon University

COTS
Commercial-Off-the-Shelf

CSCI
Computer Software Configuration Item

CTE
Critical Technology Element

CTSF
Central Technical Support Facility

CMU/SEI-2010-TR-044 | 30

DCMA
Defense Contract Management Agency

DIACAP
DoD Information Assurance Certification and Accreditation Process

DoD
Department of Defense

DoDI
Department of Defense Instruction

DT&E
Developmental Test and Evaluation

ERP
Enterprise Resource Planning

FCA
Functional Configuration Audit

FOC
Full Operational Capability

FQT
Formal Qualification Test

FRP
Full-Rate Production

GOTS
Government-Off-the-Shelf

IA
Information Assurance

IDE
Integrated Development Environment

IOC
Initial Operational Capability

IOT&E
Initial Operational Test and Evaluation

CMU/SEI-2010-TR-044 | 31

IT
Information Technology

LRIP
Low-Rate Initial Production

OSD
Office of the Secretary of Defense

OSI
Open Systems Interconnection

OT&E
Operational Test and Evaluation

PCA
Physical Configuration Audit

PDR
Preliminary Design Review

PEO
Program Executive Office

PM
Project/Program Manager

PMO
Program Management Office, Project Management Office

QESA
Quality Engineering and System Assurance

R&D
Research and Development

RFP
Request for Proposal

SEC
Software Engineering Center

SED
Software Engineering Directorate

CMU/SEI-2010-TR-044 | 32

SEI
Software Engineering Institute

Sim/Stim
Simulation/Stimulation

SKL
Simple Key Loader

SoS
System of Systems

SRL
Software Readiness Level

SRR
System Requirement Review

SRS
Software Requirements Specification

SSDD
System/Subsystem Design Document

SSTC
Systems and Software Technology Conference

STR
Software Test Report

TPM
Technical Performance Measures

TRA
Technology Readiness Assessment

TRL
Technology Readiness Level

VDD
Version Description Document

WBS
Work Breakdown Structure

CMU/SEI-2010-TR-044 | 33

Appendix B: DoD TRL Definitions

Table 4 shows the official DoD definitions of technology readiness levels for both hardware (left half of the table) and software (right half of the table) [DoD
2009].

Table 4: DoD Definitions of Technology Readiness Levels for Hardware and Software

Hardware TRL Definitions, Descriptions,
and Supporting Information

Software TRL Definitions, Descriptions,
and Supporting Information

TRL
Definition Description Supporting Information TRL

Definition Description Supporting Information

1

Basic
principles
observed and
reported.

Lowest level of technology readiness.
Scientific research begins to be
translated into applied research and
development (R&D). Examples might
include paper studies of a technology’s
basic properties.

Published research that identifies
the principles that underlie this
technology. References to who,
where, when.

1

Basic
principles
observed and
reported.

Lowest level of software
technology readiness. A new
software domain is being
investigated by the basic
research community. This level
extends to the development of
basic use, basic properties of
software architecture,
mathematical formulations, and
general algorithms.

Basic research activities,
research articles, peer-reviewed
white papers, point papers, early
lab model of basic concept may
be useful for substantiating the
TRL.

2

Technology
concept
and/or
application
formulated.

Invention begins. Once basic principles
are observed, practical applications can
be invented. Applications are
speculative, and there may be no proof
or detailed analysis to support the
assumptions. Examples are limited to
analytic studies.

Publications or other references that
outline the application being
considered and that provide analysis
to support the concept.

2

Technology
concept
and/or
application
formulated.

Once basic principles are
observed, practical applications
can be invented. Applications are
speculative, and there may be no
proof or detailed analysis to
support the assumptions.
Examples are limited to analytic
studies using synthetic data.

Applied research activities,
analytic studies, small code
units, and papers comparing
competing technologies.

3

Analytical and
experimental
critical
function
and/or
characteristic
proof of
concept.

Active R&D is initiated. This includes
analytical studies and laboratory studies
to physically validate the analytical
predictions of separate elements of the
technology. Examples include
components that are not yet integrated
or representative.

Results of laboratory tests
performed to measure parameters of
interest and comparison to analytical
predictions for critical subsystems.
References to who, where, and
when these tests and comparisons
were performed.

3

Analytical and
experimental
critical
function
and/or
characteristic
proof of
concept.

Active R&D is initiated. The level
at which scientific feasibility is
demonstrated through analytical
and laboratory studies. This level
extends to the development of
limited functionality environments
to validate critical properties and
analytical predictions using non-
integrated software components
and partially representative data.

Algorithms run on a surrogate
processor in a laboratory
environment, instrumented
components operating in a
laboratory environment,
laboratory results showing
validation of critical properties.

CMU/SEI-2010-TR-044 | 34

Hardware TRL Definitions, Descriptions,
and Supporting Information

Software TRL Definitions, Descriptions,
and Supporting Information

TRL
Definition Description Supporting Information TRL

Definition Description Supporting Information

4

Component
and/or
breadboard
validation in a
laboratory
environment.

Basic technological components are
integrated to establish that they will work
together. This is relatively “low fidelity”
compared with the eventual system.
Examples include integration of “ad hoc”
hardware in the laboratory.

System concepts that have been
considered and results from testing
laboratory-scale breadboard(s).
References to who did this work and
when. Provide an estimate of how
breadboard hardware and test
results differ from the expected
system goals.

4

Module and/or
subsystem
validation in a
laboratory
environment
(i.e., software
prototype
development
environment).

Basic software components are
integrated to establish that they
will work together. They are
relatively primitive with regard to
efficiency and robustness
compared with the eventual
system. Architecture
development initiated to include
interoperability, reliability,
maintainability, extensibility,
scalability, and security issues.
Emulation with current/legacy
elements as appropriate.
Prototypes developed to
demonstrate different aspects of
eventual system.

Advanced technology
development, stand-alone
prototype solving a synthetic full-
scale problem, or standalone
prototype processing fully
representative data sets.

5

Component
and/or
breadboard
validation in a
relevant
environment.

Fidelity of breadboard technology
increases significantly. The basic
technological components are
integrated with reasonably realistic
supporting elements so they can be
tested in a simulated environment.
Examples include “high-fidelity”
laboratory integration of components.

Results from testing a laboratory
breadboard system are integrated
with other supporting elements in a
simulated operational environment.
How does the “relevant
environment” differ from the
expected operational environment?
How do the test results compare
with expectations? What problems, if
any, were encountered? Was the
breadboard system refined to more
nearly match the expected system
goals?

5

Module and/or
subsystem
validation in a
relevant
environment.

Level at which software
technology is ready to start
integration with existing systems.
The prototype implementations
conform to target
environment/interfaces.
Experiments with realistic
problems. Simulated interfaces
to existing systems. System
software architecture
established. Algorithms run on a
processor(s) with characteristics
expected in the operational
environment.

System architecture diagram
around technology element with
critical performance
requirements defined. Processor
selection analysis,
Simulation/Stimulation
(Sim/Stim) Laboratory buildup
plan. Software placed under
configuration management.
Commercial-of-the-
shelf/government-off-the-shelf
(COTS/GOTS) components in
the system software architecture
are identified.

CMU/SEI-2010-TR-044 | 35

Hardware TRL Definitions, Descriptions,
and Supporting Information

Software TRL Definitions, Descriptions,
and Supporting Information

TRL
Definition Description Supporting Information TRL

Definition Description Supporting Information

6

System/subsy
stem model
or prototype
demonstratio
n in a
relevant
environment.

Representative model or prototype
system, which is well beyond that of
TRL 5, is tested in a relevant
environment. Represents a major step
up in a technology’s demonstrated
readiness. Examples include testing a
prototype in a high-fidelity laboratory
environment or in a simulated
operational environment.

Results from laboratory testing of a
prototype system that is near the
desired configuration in terms of
performance, weight, and volume.
How did the test environment differ
from the operational environment?
Who performed the tests? How did
the test compare with expectations?
What problems, if any, were
encountered? What are/were the
plans, options, or actions to resolve
problems before moving to the next
level?

6

Module and/or
subsystem
validation in a
relevant end-
to-end
environment.

Level at which the engineering
feasibility of a software
technology is demonstrated. This
level extends to laboratory
prototype implementations on
full-scale realistic problems in
which the software technology is
partially integrated with existing
hardware/software systems.

Results from laboratory testing
of a prototype package that is
near the desired configuration in
terms of performance, including
physical, logical, data, and
security interfaces. Comparisons
between tested environment and
operational environment
analytically understood. Analysis
and test measurements
quantifying contribution to
system-wide requirements such
as throughput, scalability, and
reliability. Analysis of human-
computer (user environment)
begun.

7

System
prototype
demonstratio
n in an
operational
environment.

Prototype near or at planned operational
system. Represents a major step up
from TRL 6 by requiring demonstration
of an actual system prototype in an
operational environment (e.g., in an
aircraft, in a vehicle, or in space).

Results from testing a prototype
system in an operational
environment. Who performed the
tests? How did the test compare with
expectations? What problems, if
any, were encountered? What
are/were the plans, options, or
actions to resolve problems before
moving to the next level?

7

System
prototype
demonstration
in an
operational
high-fidelity
environment.

Level at which the program
feasibility of a software
technology is demonstrated. This
level extends to operational
environment prototype
implementations, where critical
technical risk functionality is
available for demonstration and
a test in which the software
technology is well integrated with
operational hardware/software
systems.

Critical technological properties
are measured against
requirements in an operational
environment.

8

Actual system
completed
and qualified
through test
and
demonstratio
n.

Technology has been proven to work in
its final form and under expected
conditions. In almost all cases, this TRL
represents the end of true system
development. Examples include
developmental test and evaluation
(DT&E) of the system in its intended
weapon system to determine if it meets
design specifications.

Results of testing the system in its
final configuration under the
expected range of environmental
conditions in which it will be
expected to operate. Assessment of
whether it will meet its operational
requirements. What problems, if any,
were encountered? What are/were
the plans, options, or actions to
resolve problems before finalizing
the design?

8

Actual system
completed
and mission
qualified
through test
and
demonstration
in an
operational
environment.

Level at which a software
technology is fully integrated with
operational hardware and
software systems. Software
development documentation is
complete. All functionality tested
in simulated and operational
scenarios.

Published documentation and
product technology refresh build
schedule. Software resource
reserve measured and tracked.

CMU/SEI-2010-TR-044 | 36

Hardware TRL Definitions, Descriptions,
and Supporting Information

Software TRL Definitions, Descriptions,
and Supporting Information

TRL
Definition Description Supporting Information TRL

Definition Description Supporting Information

9

Actual system
proven
through
successful
mission
operations.

Actual application of the technology in
its final form and under mission
conditions, such as those encountered
in operational test and evaluation
(OT&E). Examples include using the
system under operational mission
conditions.

OT&E reports. 9

Actual system
proven
through
successful
mission-
proven
operational
capabilities.

Level at which a software
technology is readily repeatable
and reusable. The software
based on the technology is fully
integrated with operational
hardware/software systems. All
software documentation verified.
Successful operational
experience. Sustaining software
engineering support in place.
Actual system.

Production configuration
management reports.
Technology integrated into a
reuse “wizard.”

CMU/SEI-2010-TR-044 | 37

CMU/SEI-2010-TR-044 | 38

References

URLs are valid as of the publication date of this document.

[Bandor 2010]
Bandor, Michael & Miller, Suzanne. “Status of Ongoing Work in Software TRAs/TRLs.”
Proceedings of Systems and Software Technology Conference, Hill AFB, 2010.
www.sei.cmu.edu/library/abstracts/presentations/bandor-garcia-miller-sstc-apr-2010.cfm

[CJCS 2001]
Chairman of the Joint Chiefs of Staff. Department of Defense Dictionary of Military and
Associated Terms, Joint Publication 1-02. Washington, DC: Chairman of the Joint Chiefs of Staff,
2001. www.dtic.mil/doctrine/new_pubs/jp1_02.pdf

[CJCS 2006]
Chairman of the Joint Chiefs of Staff. Joint Operations, Joint Publication 3-0. Washington, DC:
Chairman of the Joint Chiefs of Staff, 2006. www.dtic.mil/doctrine/new_pubs/jp3_0.pdf

[CJCS 2009]
Chairman of the Joint Chiefs of Staff. Chairman of the Joint Chiefs of Staff Instruction, Joint
Capabilities Integration and Development System CJCSI 3170.01G. Washington, DC: Chairman
of the Joint Chiefs of Staff, 2009. www.dtic.mil/cjcs_directives/cdata/unlimit/3170_01.pdf

[DoD 2008]
Undersecretary of Defense for Acquisition, Technology, and Logistics. Department of Defense
Instruction 5000.02. Washington, DC: Undersecretary of Defense for Acquisition, Technology,
and Logistics, 2008. www.dtic.mil/whs/directives/corres/pdf/500002p.pdf

[DoD 2009]
Director, Research Directorate. Technology Readiness Assessment (TRA) Deskbook. Washington,
DC: Office of the Director, Defense Research and Engineering, 2009.
www.dod.mil/ddre/doc/DoD_TRA_July_2009_Read_Version.pdf

[DoD 2010]
Department of Defense. Ch. 4.1.4 “System of Systems Engineering.” Defense Acquisition
Guidebook: Washington, DC: Pentagon, 2010.
https://acc.dau.mil/CommunityBrowser.aspx?id=332957&lang=en-US

[Fenn 2009]
Fenn, Jackie & Raskino, Mark. Understanding Gartner’s Hype Cycles,” Gartner, Inc., 2009.
www.gartner.com/DisplayDocument?id=1069314

[Meade 2003]
Meade, Charles & Abbott, Meagan. Assessing Federal Research and Development for Hazard
Loss Reduction. RAND, 2003. www.rand.org/pubs/monograph_reports/2005/MR1734.pdf

http://www.sei.cmu.edu/library/abstracts/presentations/bandor-garcia-miller-sstc-apr-2010.cfm
http://www.dtic.mil/doctrine/new_pubs/jp1_02.pdf
http://www.dtic.mil/doctrine/new_pubs/jp3_0.pdf
http://www.dtic.mil/cjcs_directives/cdata/unlimit/3170_01.pdf
http://www.dtic.mil/whs/directives/corres/pdf/500002p.pdf
http://www.dod.mil/ddre/doc/DoD_TRA_July_2009_Read_Version.pdf
https://acc.dau.mil/CommunityBrowser.aspx?id=332957&lang=en-US
http://www.gartner.com/DisplayDocument?id=1069314
http://www.rand.org/pubs/monograph_reports/2005/MR1734.pdf

CMU/SEI-2010-TR-044 | 39

[Prensky 2001]
Prensky, Marc. Digital Game-Based Learning. McGraw-Hill Companies, 2001 (ISBN:
0071363440) www.marcprensky.com/dgbl/default.asp

[Wikipedia 2010a]
Wikipedia. “Real-time computing,” Wikipedia, The Free Encyclopedia. Wikimedia Foundation,
Inc. December 2010. www.wikipedia.org/wiki/Real-time_computing

[Wikipedia 2010b]
Wikipedia. “Subsystem,” Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc.
December 2010. www.wikipedia.org/wiki/Subsystem

http://www.marcprensky.com/dgbl/default.asp
http://www.wikipedia.org/wiki/Real-time_computing
http://www.wikipedia.org/wiki/Subsystem

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2010

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Beyond Technology Readiness Levels for Software: U.S. Army Workshop Report

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Stephen Blanchette, Jr., Cecilia Albert, & Suzanne Garcia-Miller

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TR-044

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2010-109

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Carnegie Mellon® Software Engineering Institute (SEI) facilitated an Army workshop, Beyond Technology Readiness Levels for
Software, on August 10-11, 2010. The workshop, part of the ongoing Army Strategic Software Improvement Program (ASSIP), was an
attempt to develop an Army perspective on the “right” software information to gather and analyze at significant program decision points
(especially Milestones A, B, and C) to determine readiness to proceed to the next acquisition phase. This report synthesizes the
workshop presentations, discussions, and outcomes.

14. SUBJECT TERMS

Technology Readiness Levels; Software Readiness

15. NUMBER OF PAGES

55

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Beyond Technology Readiness Levels for Software: U.S. Army Workshop Report
	Beyond Technology Readiness Levels for Software: U.S. Army Workshop Report
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Executive Summary
	Abstract
	1 Introduction
	2 A Common Glossary
	3 Presentation Summaries
	4 Discussion and Working Group Summaries
	5 Conclusion and Future Work
	Feedback
	Appendix A: Acronyms and Abbreviations
	Appendix B: DoD TRL Definitions
	References

